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Detecting Abraham’s force of light by the Fresnel-Fizeau effect
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Abstract. The issue of the form that the energy tensor of the electromagnetic field should be given in
matter is reconsidered, and the neat derivation of Abraham’s tensor once provided by W. Gordon is
recollected. In order to extend to the high frequency domain the experimental evidence gathered up to
now in favour of Abraham’s tensor, a method for detecting the Abraham’s force supposedly exerted by
light on a transparent, homogeneous medium is outlined. It avails of the Fresnel-Fizeau effect associated
with the motion of matter that should be caused by the above mentioned force.

PACS. 03.50.-z Classical field theory – 04.20-q Classical general relativity – 42.65-k Nonlinear optics

1 Introduction

While a general consensus was eventually reached on the
form to be given to the field equations of macroscopic elec-
tromagnetism, both in matter and in vacuo, the very form
of the energy tensor of the electromagnetic field, hence the
expression of the forces that the field should exert on mat-
ter, despite ingenuous efforts spread in a time span of more
than one century, is still an open question. This state of
affairs looks somewhat disappointing if one reminds that
accounting for the electrodynamic forces was the raison
d’être of the field conception itself. One is however forced
to acknowledge that the revolution in physics happened
at the beginning of this century has not helped in set-
tling this problem, as it could have been expected at the
outset. The radical changes in the theoretical approach to
the whole set of questions concerning matter and radiation
brought in by quantum mechanics and by quantum field
theory, that so much have contributed to our present un-
derstanding, have cast a very dim light on the specific issue
of the electrodynamic forces that prevail in matter. The
“status of the electromagnetic energy-tensor”, ridiculed by
Synge in 1974 with a witty tale [1], is such that we still
do not know for certain whether e.g. it was Minkowski [2]
or Abraham [3] (just to quote the two best known propos-
als belonging to a huge theoretical literature) who came
closer to a correct description of the electrodynamic forces
in macroscopic matter.

Given the abundance of theoretical papers dealing with
the problem, one could expect to meet with an equally rich
experimental outflow, but, as well documented by the ac-
curate report [4] published in 1979 by Brevik, that still
constitutes an updated account, the latter production is
rather sporadic and, more importantly, very few experi-
ments survive a critical analysis as valuable pieces of evi-
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dence that discriminates between different theoretical op-
tions.

Among these few are the experiments proposed in
1955 by Marx and Györgyi [5], and performed in 1974
by Walker et al. [6], that are rated [4] as providing sub-
stantial support to the validity of the energy tensor pro-
posed by Abraham. However, the experiments done by
Walker et al. only deal with electromagnetic fields of very
low frequency, while it would be theoretically important
to ascertain whether light itself, being an electromagnetic
phenomenon well described by Maxwell’s equations1, ex-
erts Abraham’s force on a transparent dielectric through
which it happens to travel.

The present paper is meant to outline the theoretical
underpinnings of a possible experiment. After recalling,
in Section 2, the conceptually straightforward derivation
[7] of Abraham’s energy tensor given long ago by Gordon,
in Section 3 it is shown how one can avail of the Fresnel-
Fizeau effect for detecting the Abraham’s force exerted by
light on a transparent medium.

2 Gordon’s derivation of Abraham’s energy
tensor

Gordon’s far-sighted paper of 1923 produces for the first
time the idea that electromagnetism in a linear, nondis-
persive medium that is homogeneous and isotropic in its
rest frame can be reduced to electromagnetism in the vac-
uum of general relativity, as soon as one avails of a suitably
defined “effective” metric, endowed inter alia with a re-
markable physical property: its null geodesics, in the
limit of geometrical optics, describe the rays along

1 At least as far as quantum features do not force us to jump
to a different paradigm.
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which light propagates in the medium. The same effec-
tive metric allows one to bring the choice of the La-
grangian for the electromagnetic field in the medium
back to the case of the general relativistic vacuum,
and to select uniquely, through the well established
procedure [8] inaugurated by Hilbert, Abraham’s ten-
sor as the energy tensor for the electromagnetic field
in the above mentioned matter. While Gordon’s find-
ing about the null geodesics was further considered and
extended [9], the result about Abraham’s tensor, to
our knowledge [10], has been completely forgotten. We
shall reproduce it here in extenso because, apart from
the other virtues of its general relativistic formulation,
Gordon’s argument provides the shortest and most trans-
parent way for showing the reader how and why such a
thing as Abraham’s energy tensor may be arrived at.

2.1 The field equations and the constitutive relations
of electromagnetism

As stressed by Schrödinger [11], the unconnected space-
time manifold suffices for writing Maxwell’s equation in
the naturally invariant form:

Hik
,k = si, (1)

F[ik,m] = 0, (2)

where Hik is a skew, contravariant tensor density that rep-
resents the electric displacement and the magnetic field,
while Fik is a covariant skew tensor that accounts for the
electric field and for the magnetic induction in the well
known way [12]. Of course, even if the four-current density
si is prescribed a priori, these equations are not sufficient
for determining, in a given co-ordinate system, both Hik

and Fik. They fulfil the two identities:

Hik
,k,i = 0, (3)

which ensures the conservation of the electric four-current,
and

eikmnF[ik,m],n = 0, (4)

where eikmn is the totally antisymmetric tensor density of
Ricci and Levi Civita. As the mere count of field compo-
nents, equations and identities already suggests, Maxwell’s
equations need to be complemented by the so-called con-
stitutive equations, which can take the form of a tensor
equation that uniquely defines for instance Hik in terms
of Fik and of the other fields that one may believe helpful
in figuring out the electromagnetic medium. For a linear
medium the constitutive equations can be written as [13]:

Hik =
1

2
XikmnFmn, (5)

where the properties of the medium are specified by the
four-index tensor density Xikmn. If the medium is the vac-
uum of general relativity, only the metric tensor gik in
algebraic form will enter its definition:

Xikmn ≡
√
g(gimgkn − gingkm), (6)

where g ≡ −det(gik), and the constitutive equation will
read

Hik = Fik ≡
√
ggimgknFmn. (7)

2.2 The field equations and the energy tensor
of electromagnetism for the vacuum of general
relativity

Let us remind that in a manifold equipped with the pseudo
Riemannian metric tensor gik a generic skew tensor Fik
can always be written as the sum of the curl of a potential
ϕ and of the tensor dual to the curl of an “antipotential”
ψ:

Fik = ϕk,i − ϕi,k + e mn
ik (ψn,m − ψm,n), (8)

where the mixed tensor e mn
ik is obtained from eikmn with

the usual procedure. If we start from the Lagrangian den-
sity

L =
1

4
FikFik − siϕi, (9)

Hamilton’s principle will yield both sets of Maxwell’s equa-
tions:

Fik,k = si, (10)

F[ik,m] = 0, (11)

by subjecting ϕ and ψ to independent variations [14]. The
Hamiltonian derivative of L with respect to the metric
tensor will instead provide the energy tensor density of the
electromagnetic field [8] that prevails in the gravitational
vacuum:

Tik ≡ 2
δL

δgik
= F n

i Fkn −
1

4
gikF

mnFmn. (12)

This expression for the energy tensor holds provided that
the homogeneous set of Maxwell’s equations is satisfied.

2.3 The constitutive equations for a homogeneous,
isotropic medium and Gordon’s effective metric

The constitutive equations of such a medium were given
by Minkowski for the special theory of relativity [2], and
can be extended without change to the general theory. If
ui is the four-velocity of matter, by adopting Gordon’s
conventions for the metric gik we shall write uiui = −1.
Let us define the four-vectors:

Fi = Fiku
k, Hi = Hiku

k; (13)

in general relativity an electromagnetic medium can be
told homogeneous and isotropic if its constitutive equa-
tions can be written as

Hi = εFi, (14)
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uiFkm + ukFmi + umFik

= µ
[
uiHkm + ukHmi + umHik

]
, (15)

where the numbers ε and µ account for the dielectric con-
stant and for the magnetic permeability of the medium.
As shown by Gordon [7], these eight equations, that entail
two identities, are equivalent to the six equations

µHik = F ik + (εµ− 1)(uiF k − ukF i) (16)

that provide the constitutive relation in standard form.
Gordon noticed that the previous equation can also be
written as

µHik =
[
gir − (εµ− 1)uiur

][
gks − (εµ− 1)ukus

]
Frs.

(17)

The very form of the latter equation suggests to define the
“effective metric tensor”

γik = gik − (εµ− 1)uiuk, (18)

that allows casting the constitutive equation into the form

µHik =
√
gγirγksFrs. (19)

The inverse of γik is

γik = gik +
(
1−

1

εµ

)
uiuk; (20)

since g ≡ −det(gik), one poses γ ≡ −det(γik), and finds
[7]:

γ =
g

εµ
· (21)

Therefore the constitutive equation eventually comes to
read:

Hik =

√
ε

µ

√
γγirγksFrs, (22)

i.e., apart from a constant factor, coincides with the con-
stitutive relation of a general relativistic “vacuum” defined
by the effective metric tensor γik.

2.4 The choice of the Lagrangian, and the energy
tensor deriving from it

As put by Lanczos in his account [15] of Gordon’s paper
written for “Physikalische Berichte”2:

“Durch Zurückführung aus das Vakuum hat man
die Bequemlichkeit, unmittelbar das Prinzip der
kleinsten Wirkung anwenden zu können, und erhält
so den Abrahamschen elektromagnetischen Energie
tensor des Feldes in ponderablen Körpern.”

2 Through the reduction to the vacuum one has the advan-
tage to can immediately apply the least action principle, and
obtains in this way Abraham’s electromagnetic energy tensor
of the field in ponderable bodies.

Given the analogy with the vacuum, the choice of the
Lagrangian for the electromagnetic field in the medium is
in fact immediate:

L′ =
1

4

√
ε

µ

√
γF (i)(k)Fik − siϕi, (23)

where, as before, one can write

Fik = ϕk,i − ϕi,k +
1
√
γ

e mn
(i)(k) (ψn,m − ψm,n);

(24)

we have adopted the convention of enclosing within round
brackets the indices that are either moved with γik and
γik, or generated by performing the Hamiltonian deriva-
tive with respect to the just mentioned tensors. Indepen-
dent variations of the action integral with respect to ϕ and
ψ [14] will produce now Maxwell’s equations (1) and (2).
If the metric tensor of our pseudo-Riemannian space-time
were γik, we could obtain the energy tensor by executing
the Hamiltonian derivative of the Lagrangian density L′

with respect to the latter metric:

δL′ ≡
1

2
T′(i)(k)δγ

ik, (25)

and we would get the mixed tensor density

T
′ (k)
(i) = FirH

kr −
1

4
δ ki FrsH

rs, (26)

which is just Minkowski energy tensor density in general
relativistic form. But gik, not γik, is the true metric that
accounts for the structure of space-time and, through the
Einstein tensor, defines its overall energy tensor. Therefore
the partial contribution to that energy tensor coming from
the electromagnetic field must be obtained by calculating
the Hamiltonian derivative of L′ with respect to gik. After
some algebra one easily gets the electromagnetic energy
tensor:

T k
i = FirH

kr −
1

4
δ ki FrsH

rs − (εµ− 1)Ωiu
k,

(27)

where

Ωi = −
(
T i
k u

k + uiTmnu
mun

)
(28)

is Minkowski’s “Ruh-Strahl” [2]. Since Ωiui ≡ 0, substi-
tuting (27) into (28) yields:

Ωi = FmH
im − FmH

mui

= ukFm
(
Hikum +Hkmui +Hmiuk

)
(29)

and one eventually recognizes that Tik is the general rel-
ativistic extension of Abraham’s tensor [3] for a medium
that is homogeneous and isotropic according to the defi-
nition given above. With Gordon’s conventions, the four-
force density exerted by the electromagnetic field on the
medium is given by (minus) the covariant divergence of
the energy tensor density T k

i :

fi = −T k
i ;k. (30)
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3 Proposal for detecting the Abraham’s force
exerted by light within a transparent medium

We abandon now the general relativistic framework that
has allowed the straightforward derivation of Abraham’s
tensor, and we assume henceforth that space-time is flat
and looked at from a Minkowskian co-ordinate system:

gik = ηik ≡ diag(1, 1, 1,−1). (31)

We assume further that, in the absence of applied electro-
magnetic fields, the homogeneous, isotropic medium hap-
pens to be at rest in that co-ordinate system, i.e.:

uλ = 0, u4 = 1; (32)

the Greek indices run over the spatial co-ordinates. Let the
macroscopic four-current si be vanishing in our medium;
despite this fact the force density exerted by the electro-
magnetic field on the medium is in general not vanishing,
as it would be if the energy tensor had the form postulated
by Minkowski, and is given by:

fλ = −
εµ− 1

µ
[F4αF

α
λ ],4, f4 = 0. (33)

This is a quite remarkable outcome: as soon as in our
coordinate system the electromagnetic field displays a de-
pendence on time we shall expect that the field interact
with the medium by exerting a force on it, despite the fact
that the latter is homogeneous and devoid of macroscopic
charges and currents. Due to this peculiarity, the attempt
to build a phenomenological quantum electrodynamics by
starting from Abraham’s tensor [16,17] in order to evade
some unpalatable consequences of the approach inaugu-
rated by Jauch and Watson [18] fails to produce “pho-
tons”, since the operators representing the energy and the
momentum of the field do not have common eigenvectors.

Written in m.k.s. units, Abraham’s ordinary force den-
sity takes the well known expression:

f =
n2 − 1

c2
∂

∂t
(E×H) , (34)

where n is the refractive index of the medium, c is the
speed of light in vacuo, and the three-dimensional nota-
tion is adopted.

3.1 Abraham’s force exerted by a modulated light
wave sets the medium in macroscopic motion

A light wave in our medium can be modeled after, say,
the plane polarized electromagnetic wave with wave vec-
tor k and angular frequency ω that happens to propagate
along the x axis of a Cartesian co-ordinate system; the
nonvanishing components of this field can read:

Ey = E0 cos(kx− ωt), Bz =
√
ε0εµ0µE0 cos(kx− ωt)

(35)

in m.k.s. units. If Abraham’s tensor holds for light, such
a wave should exert a quite sizeable force density on the

medium already with small light intensities, but a detec-
tion of its presence is hopeless, since its macroscopic av-
erage is vanishingly small over experimentally affordable
length and time scales. However Brevik [4] has shown that,
if the amplitude of the light wave is modulated at a low
frequency, a mechanical effect due to Abraham’s force may
become detectable at a macroscopic scale. Imagine that a
light wave fully modulated in amplitude can be described
by the nonvanishing electromagnetic field components:

Ey = E0 cos(k1x− ω1t) cos(k2x− ω2t), (36)

Bz =
√
ε0εµ0µE0 cos(k1x− ω1t) cos(k2x− ω2t), (37)

with

ω1

k1
=
ω2

k2
=
c

n
, (38)

where ω2 is the angular frequency of the unmodulated
light, ω1 is the angular frequency of modulation, and
ω1 � ω2. We assume henceforth that the propagation
occurs in a medium for which µ = 1. The Abraham’s or-
dinary force density (34) corresponding to the modulated
field is directed along the x axis and has the value:

f = n
n2 − 1

4c
ε0E

2
0

∂

∂t
{[1 + cos 2(k1x− ω1t)]

×[1 + cos 2(k2x− ω2t)]} ; (39)

it contains the low frequency component

flow = n
n2 − 1

2c
ε0E

2
0ω1 sin 2(k1x− ω1t) (40)

which is potentially detectable [4] although, since its in-
tensity is proportional to ω1, one must be prepared to
confront a severe experimental challenge.

We assume the length L of the path of light in the
transparent medium to be much shorter than the wave-
length λ1 = 2π/k1 of the modulating wave; therefore one
can disregard the spatial dependence of flow and consider
the force density felt by the medium at a macroscopic
level as depending only on time. We assume further that
the transparent medium is allowed to move in some way
in the direction of the force and that, under the effect of
the latter, it will undergo as a whole standing oscillations
with velocity v = v0 sin(2ω1t+ ϕ); both the amplitude v0

and the phase ϕ of the motion will depend on the details
of the experimental set-up, that have been discussed else-
where [19]. We shall disregard here the surface forces that
the finiteness of the medium will necessarily entail, since
their effect on the motion can be separately detected3.

3 If the electromagnetic field crossing the dielectric medium
has the space-time dependence described by equations (36, 37),
the experimental device can be so arranged that the low fre-
quency component of the surface forces [4] turns out to be,
with the required accuracy, in quadrature with respect to the
low frequency component of Abraham’s force.
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3.2 The motion of the medium affects the propagation
of a second, unmodulated light wave

Since v0 is certainly quite small with respect to the veloc-
ity of light c, we can approximate the four-velocity of the
medium as:

ui ≈ (β, 0, 0, 1), (41)

where

β =
v0

c
sin(2ω1t+ ϕ) ≈ −

v0

c
sin[2(k1x− ω1t)− ϕ];

(42)

the term k1x has a negligible value along the path of light
in the medium, supposed to occur between x = 0 and
x = L; it has been inserted for ease of calculation. Imag-
ine now that a second wave of unmodulated, linearly po-
larized light having, say, the same frequency ω2 as the
first wave travels through the medium in the same direc-
tion, and that, due to some contrivance, no overlapping
of the two beams can occur. We shall assume that when
the first beam is absent, and the medium is at rest, the
electromagnetic field that models the second beam has the
nonvanishing components:

F24 = E′0 cos(k2x− ω2t), F12 =
√
εµE′0 cos(k2x− ω2t);

(43)

we have recovered the more transparent four-dimensional,
relativistic notation, and the associated units. When the
medium is set in macroscopic motion at the angular fre-
quency ω1 by the Abraham’s force exerted by the first
beam, equations (43) will cease to provide a solution to
Maxwell’s equations since, in keeping with (16), the con-
stitutive relation has changed, although very slightly. Due
to the smallness of the change, a perturbative approach
truncated at the first order in β will suffice. Let δF ik rep-
resent the variation experienced by the unperturbed F ik;
the first-order change undergone by Hik shall be given by:

µδHik = δF ik + (εµ− 1)[(δi4δF
4k − δk4δF

4i)

+β(δi1F
4k − δk1F

4i + δi4F
k1 − δk4F

i1)]. (44)

Therefore, while the first-order correction to the unper-
turbed set of Maxwell’s equations (2) simply reads:

δF[ik,m] = 0, (45)

the correction to the other set Hik
,k = 0 turns out to be

1

µ
δFλρ,ρ + εδFλ4

,4 =
εµ− 1

µ

[
(βF 4λ),1 − (βF 1λ),4)

]
(46)

for i = λ, and

εδF 4ρ
,ρ = 0 (47)

for i = 4. The first-order correction to the unperturbed
Maxwell’s equations hence displays with respect to δF ik

the very form that the unperturbed equations exhibit with

F ik, if one excepts the component with λ = 2 of equation
(46), that can be written as:

δF 21
,1 + εµδF 24

,4 = 2(εµ− 1)(βF 42),1 (48)

since with our fields (βF 42),1 = −(βF 12),4. Therefore only
the corrections δF 21 and δF 42 to the unperturbed compo-
nents on the field F ik shall be nonvanishing. A physically
appropriate particular solution to equations (48) and (45)
can be obtained as follows. Let us set

ζ = (2k1 + k2)x− (2ω1 + ω2)t− ϕ, (49)

η = (2k1 − k2)x− (2ω1 − ω2)t− ϕ, (50)

and define the nonvanishing component δA2 of the first-
order correction to the four-potential Ai as:

δA2 = Cx[sin ζ + sin η], (51)

where C is a constant to be determined. When δFik is
defined as the curl of δAi equation (45) is fulfilled, and
the resulting components of the first-order correction:

δF12 = C[sin ζ + sin η

+(2k1 + k2)x cos ζ + (2k1 − k2)x cos η], (52)

δF42 = −
C
√
εµ

[(2k1 + k2)x cos ζ + (2k1 − k2)x cos η],
(53)

satisfy equation (48), provided that

C =
1

2
(εµ− 1)

v0

c
E′0. (54)

We gather from equations (52) and (53) that, due to the
Fresnel-Fizeau effect [12] a monocromatic, plane polarized
wave entering the medium at x = 0 gets modulated at the
frequency of the motion caused by the Abraham’s force;
when x is so large that |k2x| � 1 the modulated part of
the field can be approximately written as

δF12 ≈ 4πC
x

λ2
sin(2ω1t+ ϕ) sin(k2x− ω2t),

(55)

δF24 ≈ 4π
C
√
εµ

x

λ2
sin(2ω1t+ ϕ) sin(k2x− ω2t),

(56)

where λ2 is the wavelength of light in the considered op-
tical medium. As the light of the second wave propagates
through the latter a modulated component shows up, in
quadrature with respect to the unmodulated field (43)
and, according to the perturbative result, its amplitude
grows up linearly with the distance from the origin. There-
fore, provided that L is large enough, when compared to
the wavelength of light, and that the intensity of the first
beam is strong enough to impress to the medium an ade-
quate speed in the back and forth motion , one can hope to
prove that light indeed exerts Abraham’s force on a trans-
parent medium by detecting, with sensitive techniques,
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the change operated by the Fresnel-Fizeau effect on the
second, originally unmodulated beam.

3.3 A possible experimental setup

It is not our intention to deprive the experimentalists from
the demiurgic pleasure of figuring out how the theoretical
exertions of the previous two subsections can be translated
into an actual experimental device. However, already in
his report, written in 1979, Brevik [4] suggested availing
of a long glass fibre wound on the cylindrical drum of a
torsion pendulum, and that the modulation frequency of
the light sent into the fiber should be equal to one half the
resonance frequency of the latter, in order to enhance as
much as possible the amplitude of the motion supposedly
caused by Abraham’s force.

The great progress achieved since then in under-
standing the physical properties of the optical fibres
[20] has allowed for great improvements in the art of
manufacturing fibres and related optical devices with
the desired physical properties. One is therefore tempted
to avail of this highly developed branch of technology
for enlarging the scant evidence gathered up to now
about the force that, according to Abraham, electro-
magnetic fields should exert on the dielectric media
through which they happen to propagate. To comply
with the proposal of the present paper one should only
add to the first fibre contemplated by Brevik a second
one, in which a monochromatic, unmodulated beam
with the angular frequency ω2 is injected. An order
of magnitude estimate of the modulation induced in
the second beam by the Fresnel-Fizeau effect when an
experimental device of this sort is operated within the
presently achievable limits is provided in reference [19].
Since the modulated component of the second beam is in

quadrature with respect to the unmodulated part, an in-
terferometric method is suggested for the extraction of the
low frequency signal that should be eventually detected4.
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